Skip to main content

Cavity optomechanical device

About

We are interested in the physics and engineering of nanophotonic devices in the context of quantum information science, metrology, communications, and sensing.  We use nanofabrication technology to develop engineered geometries that strongly enhance light-matter interactions, such as parametric nonlinear optical processes, coupling to quantum emitters, and acousto-optic effects.  We study the basic device-level physics and tailor devices for specific applications, and our research generally involves computational modeling, nanofabrication, and optoelectronic and quantum photonic characterization. Recent topics have included quantum frequency conversion, single-photon and entangled-photon generation, microresonator frequency combs, optical parametric oscillators, and cavity electro-optomechanical transducers.

More generally, nanophotonic systems offer us the ability to study interesting physics in a controllable way, using platforms that are inherently suitable for the development of new technologies. Our labs are at the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, and the Joint Quantum Institute at the University of Maryland in College Park. 

Group Lead

Kartik Srinivasan portrait

Research Publications

View All Group Publications

Research

  • Numerical simulations of a circular Bragg grating microcavity (top) [Davanco et al, Appl. Phys. Lett, 2011] and a slot-mode optomechanical resonator (middle and bottom) [Davanco et al, Optics Express, 2012].
  • Proposed microwave-to-optical quantum transducer based on a coupled piezoelectric and optomechanical resonator system (Wu et al, Phys Rev. Applied, 2020).
  • Concept of spectral translation - a near-infrared pump mediates translation of an input signal in the telecom to an output in the visible (Lu et al, Nature Photonics, 2019).
  • Schematic of heterogeneous integration for quantum photonics

News

  • Five glowing rings with flame like filaments in a row against a black background. From left to right they are reddish-orange, orange, yellow, green and a greenish-blue.

    Tiny New Lasers Fill a Long-Standing Gap in Visible-Light Colors, Opening New Applications

    September 3, 2024
  • close up of a grid of rings with light swirling inside and spikes jutting out representing the elements of a frequency comb

    New Photonic Chip Spawns Nested Topological Frequency Comb

    June 20, 2024

    In new work, researchers at JQI have combined two lines of research into a new method for generating frequency combs.

  • Image showing list of talks from our lab at DAMOP 2024

    Upcoming talks at DAMOP from our lab

    May 25, 2024
View All Group News

Nanophotonics@JQI YouTube Channel

Virtual Lab Tour

Group Conference or Seminar Presentations